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Despite the enormous body of research literature dealing with 
the intramolecular activation of carbon-hydrogen bonds by the 
d-block, lanthanide, and actinide metals,2"5 there is a surprising 
lack of studies dealing with related reactivity at p-block element 
centers.6'7 This is despite the early, pioneering work of Wade 
et al.7 as well as the great importance that alkyl and aryl deriv­
atives of these elements play in chemistry today.8 During our 
synthetic and mechanistic studies of the cyclometalation chemistry 
associated with aryloxide ligation at high valent, early d-block 
metal centers (Ti4+, Zr4+, Ta5+),5 we have sought to discover 
related reactivity involving the main group metals for direct 
mechanistic comparison. We wish to communicate here our initial 
observations on the facile cyclometalation of 2,6-diphenylphenoxide 
ligands by Sn(IV) derivatives and comment on the importance 
of the leaving group in these particular systems. 

The simple treatment of SnCl4 with 2 equiv of LiOAr-2,6Ph2 

(OAr-2,6Ph = 2,6-diphenylphenoxide) in toluene solution leads 
to the formation of the cyclometalated dimer 1 in moderate yield 
over a few hours at room temperature (Scheme I).9 Refluxing 
the mixture for 1 h increases the yield of 1 significantly from 30% 
to 75%. The presence of the new six-membered metallacycle ring 
in 1 is readily detected spectroscopically (1H, 13C NMR)9 and 
was confirmed by a single-crystal X-ray diffraction analysis 
(Figure I).10 It can be seen that a dimeric structure is found 
for 1 with two pentacoordinate tin atoms being bridged by the 
two aryloxide oxygen atoms. All of the chlorine atoms are ter­
minal, and the fifth coordination site at the metal consists of the 
new tin-aryl <r-bond. 
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An interesting structural feature of 1 concerns the definite 
asymmetry in the phenoxide bridging. For example 0(10) is 
strongly bound to Sn(2) with a distance of 2.035 (2) A but only 
weakly bound to Sn(I), 2.326 (2) A, despite the fact that it is 
chelated to Sn(I) via the metalated ring. The alternating cova-
lent/dative bonds shown for for 1 in Scheme I, therefore, have 
strong structural support. 

The facile metalation observed using SnCl4 contrasts with the 
extreme thermal stabilities observed for the alkyl derivatives 
SnMe3(OAr-2,6Ph2) (2) and SnMe2(OAr-2,6Ph2)2 (3).11 Ex­
tended thermolysis of these complexes at temperatures up to 250 
0C failed to show any evidence of cyclometalation occurring with 
loss of either methane or 2,6-diphenylphenol. However, metalation 
of two 2,6-diphenylphenoxide ligands is observed to occur on 
treating Sn(NMe2)4 with 2 equiv of HOAr-2,6Ph2 at 50 0C in 
hydrocarbon solvents. The monomeric product, [Sn(OC6H3Ph-
C6H4)2(HNMe2)2] (4), containing two coordinated dimethylamine 
ligands, can be envisaged as being generated by initial formation 
of a mixed aryloxide, amido intermediate followed by aromatic 
CH bond activation involving transfer of the generated protons 
to the remaining dimethylamido ligands.12 The solid-state 
structure of 413 shows the six-coordinate tin atom chelated by the 
two six-membered metalacycle rings (Figure 2). A crystallo-
graphically imposed 2-fold axis is present in the molecule, with 
the two aryloxide oxygen atoms approximately trans to each other. 
The two dimethylamine ligands which are bound to the metal by 
a long distance of 2.32 (1) A are considerably compressed together, 
with an N-Sn-N angle of only 63.3 (5)°. An interesting structural 
feature of 4 involves the Sn-O-C angle of only 122.8 (7)°. This 
contrasts with the much larger (140-150°) angle common for 
similar metalacycles bound to high valent d-block metals where 
oxygen-p to metal-d ir-bonding is an important aspect of the 
structural chemistry.14 

(11) Me3Sn(OAr-2,6Pli2) (2): Refluxing a mixture of Me3SnCl with 
LiOAr-2,6Ph2 (1 equiv) in toluene yielded Me3Sn(OAr-2,6Ph) (2) as white 
microcrystalline needles following filtration and concentration of the filtrate. 
Anal. Calcd for SnC21H22O: C, 61.65; N, 5.42. Found: C, 61.14; H, 5.47. 
1H NMR (C6D6, 30 0C) S -0.31 (Sn-CH,; V(117Sn-1H) = 58 Hz); 13C NMR 
(C6D6, 30 "C) S -4.2 (Sn-CH3; V(119Sn-1H) = 373 Hz). The aromatic region 
of 2 showed a pattern characteristic of a nonmetalated OAr-2,6Ph2 ligand 
(Supplementary Material). Me2Sn(OAr-2,6Ph2)2 (3): Obtained in a similar 
manner to 2 only by using Me2SnCl2. Anal. Calcd for SnC38H32O2: C, 71.39; 
H, 5.04. Found: C, 71.17; H, 5.24. 1H NMR (C6D6, 30 0C) 6 -0.73 
(Sn-CiZ3; V(119Sn-1H) = 66 Hz). 

(12) Anal. Calcd for SnC40H38O2N2 (4): C, 68.89; H, 5.49; N, 4.02. 
Found: C, 67.14; H, 5.53; N, 3.96. 1H NMR (C6D6, 30 0C) 5 1.49 (s, 
Sn-NHMe2), 1.88 (br, Sn-NiZMe2); aromatic region see Supplementary 
Material; "C NMR (CDCl3, 30 0C) 6 38.1 (HNMe2). 

(13) Crystal data for SnC40H38H2O2 (4) at 22 0C: space group c2 (no. 
5), a = 18.223 (1) A, b = 7.644 (2) A, c = 13.709 (1) A, /3 = 121.440 (7)°, 
Z = 2, daka = 1.422 g cm"3. A total of 1156 unique data were collected with 
Mo Ka radiation, 4° < 26 < 45° of which 1131 with I > 3per(/) were used 
in the final refinement to yield R = 0.049, Rw = 0.070. 
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Figure 1. ORTEP view of 1 emphasizing the central coordination sphere. 
Selected bond distances (A) and angles (deg) are as follows: Sn(I)-
Sn(2) = 3.4192 (4), -O(10) = 2.326 (2), -0(20) = 2.045 (2), -Cl(11) 
= 2.354 (1), -Cl(12) = 2.290 (1), -C(122) = 2.113 (4), Sn(2)-O(10) 
= 2.035(2), -0(20) = 2.259 (2), -Cl(21) = 2.363 (1), -Cl(22) = 2.297 
(1), -C(222) = 2.103 (5), Sn(l)-O(10)-Sn(2) = 103.1 (1), Sn(I)-O-
(20)-Sn(2) = 105.1 (1). 

Figure 2. ORTEP view of 4 emphasizing the central coordination sphere. 
Selected bond distances (A) and angles (deg) are as follows: Sn-O(I) 
= 2.091 (8), -N(I ) = 2.32 (1), -C(162) = 2.12 (1), 0(I ) -Sn-O(I) = 
157.0 (4), -N(I ) = 71.2 (3), -N(I ) = 89.0 (3), -C(162) = 86.5 (3), 
-C(102) = 105.3 (4), N(I)-Sn-N(I) = 63.3 (5), C(162)-Sn-C(162) = 
118.7 (5), Sn-O(I)-C(I l ) = 122.8 (7). 
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One might intuitively expect that the lifetimes of hydrocarbon 
diradical intermediates tend to increase upon phenyl substitution 
at the radical site. Indeed, 1,4-cyclohexanediyl (la), 3T < 0.1 ns,2 

is over 3000-fold shorter lived than its phenyl derivative lb, 3T 
= 275 ns.3 The effect of a second phenyl group, e.g. as in Ic, 

a) R1 = R2= 

WR1 

c) R1 = R' 

R2 = 

= Ph 
Ph; R^=H 

, 2 . 

on the triplet lifetime is difficult to anticipate because diradicals 
are not simply "double radicals".4 In fact, no systematic studies 
of the degree of phenyl substitution in simple hydrocarbon di­
radicals appear to have been reported at this time.5 However, 
an increase in lifetime has been observed with increasing chain 
length in phenyl-substituted polymethylene diradicals.'" In this 
work we show that the effect of phenyl substitution on the lifetime 
of triplet 1,4-cyclohexanediyl differs dramatically from that of 
1,3-cyclopentanediyl. 

The azoalkanes 36 and 4 were chosen as precursors for the 
diradicals 1 and 2 in this first systematic study on the effect of 
phenyl substituents on triplet lifetimes. The unknown azoalkanes 

« 

a) R1 = R2= H 

b) R1 = Ph, R 2 = H 

c! R1= R2= Ph 

Although an electrophilic mechanism for these aromatic CH 
bond activation processes seems reasonable, careful mechanistic 
studies are planned comparable to those both reported5 and un­
derway on related d-block metal systems.15 
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4b,c were prepared by the usual triazolinedione route7 via the 
appropriate phenyl-substituted cyclopenta-l,3-dienes.8 The 
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